
Advanced Mathematical Models & Applications

Vol.7, No.2, 2022, pp.105-120

A NOTE ON THE TIME IDENTIFICATION NONLOCAL PROBLEM

Allaberen Ashyralyev1,2,3, Fathi Emharab4

1Department of Mathematics, Bahcesehir University, Istanbul, Turkey
2Peoples’ Friendship University of Russia (RUDN), Moscow, Russian Federation
3Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
4Omar Al-Mukhtar University, El-Beida, Libya

Abstract. This paper studies the time identification hyperbolic problems (IHPs) with periodic nonlocal condi-
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1 Introduction

Several IHPs have been well studied (Ashyralyev et al., 2003; Ashyralyev & Fattorini, 1992;
Kal’menov & Sadybekov, 2017), and the literatures provided therein. The study of identification
problems (IPs) for partial differential equation (PDE) play a significant role in engineering and
applied sciences (Isakov, 2006; Kabanikhin & Krivorotko, 2015; Prilepko et al., 2000), and the
resources provided therein). IPs for PDEs have been investigated (Ashyralyyev, 2014; Borukhov
& Vabishchevich, 2000; Choulli & Yamamoto, 1999; Samarskii & Vabishchevich, 2008). The
stability of the (IPs) in different formulations with several types of overdetermined conditions
for hyperbolic and telegraph equations were considered (Ashyralyev & Çekiç, 2015; Ashyralyev &
Emharab, 2019; Isgandarova, 2015; Kozhanov & Safiullova, 2010; Kozhanov & Safiullova , 2017;
Kozhanov & Telesheva, 2017; Sabitov & Yunusova, 2012 and the literatures given therein). For
the coefficients and solutions of PDEs several representations were presented (Anikonov, 1995;
Anikonov, 1996; Anikonov & Neshchadim, 2011). They present such formulas for linear and
nonlinear parabolic and hyperbolic differential problems (DPs). Finally, the authors (Grasselli et
al., 1990; Grasselli et al., 1992; Grasselli, 1992) have been proposed significant examples for real
applications of IHPs. Moreover, applications of IHPs can be study of physical phenomena like,
e.g., viscoelasticity, electromagnetic wave propagation and heat conduction (Gurtin& Sternberg,
1962; Findly et al., 1976; Rabotnov, 1980; Renardy et al., 1987; Ben-Menahem & Singh, 2012;
Gurtin & Pipkin, 1968).

105



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

In this work, we study the IHP with the desired functions u and p
utt (t, x)− (a (x)ux(t, x))x + δu(t, x)
= p (t)σ (x) + f (t, x) , 0 < x < l, 0 < t < T,
u (t, 0) = u (t, l) , ux (t, 0) = ux (t, l) , 0 ≤ t ≤ T,
u (0, x) = φ (x) , ut (0, x) = ψ (x) , 0 ≤ x ≤ l,∫ l
0 u (t, x) dx = ω (t) , 0 ≤ t ≤ T.

(1)

Here σ (x) , ω (t) , φ (x) ψ (x) and f (t, x) are given smooth functions. Suppose that

a (x) ≥ a > 0, a (l) = a (0) , δ > 0,

∫ l

0
σ (y) dy ̸= 0, σ (0) = σ (l) , σ′ (0) = σ′ (l) . (2)

The main aim of the present paper is to investigate the well-posedness of IHP (1) and con-
struct absolute stable DSs for the numerical solution of the DP. The theorem on well-posedness
of IHP (1) is established. The construction and investigation of absolute stable DSs for lin-
ear IHPs is important with different aspects: to study convergence of DSs and to consider the
nonlinear DP(without Courant’s conditions). It is our motivation for studying such type of
problem. We present a new DS for approximate solution of inverse problem (1). As you see, it
is an ill-posed problem. There are no such type of investigations in literature. For the numerical
solution of IHP (1) a new absolute stable two-step DS is constructed. The theorem on stability
estimates for the solution of this DS is proved. Moreover, the proof of the theorem is not based
on classical tools of proof on stability of DSs. Numerical results are provided. Summarizing
considered numerical experiment, we can conclude that all the theoretical statements of the
previous sections can be verified.

2 Well-posedness of IHP(1)

Let C (H) = C ([0, T ] ,H) be a Banach space of all abstract continuous functions v (y) ∈ H
determined on [0, T ] equipped with the norm

∥v∥C(H) = max
06y6T

∥v (y)∥H .

Let L2 [0, l] be the space of all square integrable functions w (x) defined on [0, l] andWk
2 [0, l] , k =

1, 2 be Sobolev spaces equipped with norms

∥w∥L2[0,l]
=

(∫ l

0
w2 (z) dz

) 1
2

,

∥w∥W1
2[0,l]

=

(∫ l

0

[
w2 (z) + w2

z (z)
]
dz

) 1
2

,

∥w∥W2
2[0,l]

=

(∫ l

0

[
w2 (z) + w2

zz (z)
]
dz

) 1
2

,

respectively. We consider the second order differential operator A determined by

Av = − (a (x) vx(x))x + δv(x) (3)

in L2 [0, l] with domain D (A) = {v : v, v′′ ∈ L2 [0, l] , v (0) = v (l) , v′ (0) = v′ (l)} dense in L2 [0, l].
It is clear that A is the positive-definite self-adjoint operator(PDSAO) in L2 [0, l] .

In the present paper, we will introduce the notation M(δ, σ, ...) to stress the fact that the
constant depends only on δ, σ, ..., which may differ in time and thus is not a subject of precision.
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Theorem 1. Let φ ∈ W2
2 [0, l] and ψ ∈ W1

2 [0, l] . Suppose that f, ft ∈ C (L2 [0, l]) and ω, ω
′′ ∈

C [0, T ]. Then the IHP has a unique solution (u, p) ∈ C (L2 [0, l]) ×C [0, T ] .

Proof. Assume that w (t, x) be the solution of the initial-nonlocal boundary value DP
wtt (t, x)− (a (x)wx (t, x))x + δw(t, x)
= f (t, x) + µ (t) [(a (x)σx (x))x − δσ (x)] ,
0 < x < l, 0 < t < T,
w (t, 0) = w (t, l) , wx (t, 0) = wx (t, l) , 0 ≤ t ≤ T,
w (0, x) = φ (x) , wt (0, x) = ψ (x) , 0 ≤ x ≤ l

(4)

and µ (t) be the function determining by

µ (t) =

∫ t

0
(t− z) p (z) dz, µ (0) = µ′ (0) = 0. (5)

Then,

u (t, x) = w (t, x) + µ (t)σ (x) . (6)

Using the integral condition in (1) and formula (6), we can obtain

µ (t) =
1

Q

(
ω (t)−

∫ l

0
w (t, p) dp

)
, Q =

∫ l

0
σ (p) dp. (7)

Since p (t) = µ′′ (t) , we obtain

p (t) =
1

Q

(
ω′′ (t)−

∫ l

0
wtt (t, p) dp

)
. (8)

Therefore, the following theorem will be complete the proof of Theorem 1.

Theorem 2. Under assumptions of Theorem 1, the initial-boundary value DP (4) has a unique
solution w ∈ C (L2 [0, l]) .

Proof. The DP (4) is equivalent to the integral equation

w(t, x) = c (t)φ (x) + s (t)ψ (x) (9)

+

∫ t

0
s (t− z)

{
f (z, x)− 1

Q

(
ω (z)−

∫ l

0
w (z, p) dp

)
Aq (x)

}
dz

in C [0, T ]×C [0, l] . Here, c(t) and s(t) are operator-functions generated by the operator A and
defined by formulas

c(t)u =
eiA

1
2 t + e−iA

1
2 t

2
u, s(t)u =

∫ t

0
c(y)udy. (10)

Let us give estimates (see, Ashyralyev & Fattorini, 1992) that will be needed below

∥A− 1
2 ∥L2[0,l]→L2[0,l] ≤ δ−

1
2 , ∥s(t)∥L2[0,l]→L2[0,l] ≤ t,

∥c(t)∥L2[0,l]→L2[0,l] ≤ 1, ∥A
1
2 s(t)∥L2[0,l]→L2[0,l] ≤ 1. (11)

Then, the recursive formula for the solution of DP (4) is defined by

wj(t, x) = c (t)φ (x) + s (t)ψ (x) (12)
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+

∫ t

0
s (t− z)

{
f (z, x)− 1

Q

(
ω (z)−

∫ l

0
wj−1 (z, p) dp

)
Aσ (x)

}
dz,

w0(t, x) = c (t)φ (x) + s (t)ψ (x) , j ≥ 1.

Therefore,

w (t, x) = w0 (t, x) +
∞∑
i=0

(wi+1 (t, x)− wi (t, x)) . (13)

Applying estimates (11), we can obtain

∥w0 (t, .)∥L2[0,l]
6 ∥φ∥L2[0,l]

+ T ∥ψ∥L2[0,l]
=M0

for every t ∈ [0, T ] . Applying formula (12), we get

w1(t, x)− w0(t, x)

=

∫ t

0
s (t− y)

{
f (z, x)− 1

Q

(
ω (z)−

∫ l

0
w (z, p) dp

)
Aq (x)

}
dz,

wj+1(t, x)− wj(t, x)

=

∫ t

0
s (t− z)

{∫ l
0 (wj(z, p)− wj−1 (z, p)) dp

Q
Aq (x)

}
dz, j ≥ 2.

Applying estimates (11), we can get

∥w1(t, ·)− w0(t, ·)∥L2[0,l]
≤
∫ t

0

∥∥∥∥{A− 1
2 f (z, ·)− 1

Q

(
ω (z)−

∫ l

0
w (z, p) dp

)
A

1
2 q (·)

}∥∥∥∥
L2[0,l]

dz

≤
{

1√
δ

max
0≤z≤T

∥f (z, ·)∥L2[0,l]

+
1

|Q|

[
max
0≤z≤T

|ω (z)|+
√
l max
0≤z≤T

∥w0 (z, .)∥L2[0,l]

] ∥∥∥A 1
2σ (·)

∥∥∥
L2[0,l]

}
t ≤Mt,

∥wj+1(t, ·)− wj(t, ·)∥L2[0,l]
≤
∫ t

0

∥∥∥∥∥
{∫ l

0 wj(z, p)− wj−1 (z, p) dp

Q
A

1
2σ (x)

}∥∥∥∥∥
L2[0,l]

dz

≤
√
l

|Q|

∥∥∥A 1
2σ (·)

∥∥∥
L2[0,l]

∫ t

0
∥wj(z, ·)− wj−1(z, ·)∥L2[0,l]

dz

≤ K1

∫ t

0
∥wj(z, ·)− wj−1(z, ·)∥L2[0,l]

dz, j ≥ 2

for every t ∈ [0, T ] . Applying the triangle inequality, we can obtain

∥w1 (t, ·)∥L2[0,l]
≤M0 +Mt

for any t ∈ [0, T ] . Moreover,

∥w2 (t, ·)− w1 (t, ·)∥L2[0,l]
≤ K1

∫ t

0
∥w1(z, ·)− w0(z, ·)∥L2[0,l]

dz

≤ K1M

∫ t

0
zdz = K1M

t2

2
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for every t ∈ [0, T ] . Let

∥wj (t, ·)− wj−1 (t, ·)∥L2[0,l]
≤ M

K1

(K1t)
j

j!

for any t ∈ [0, T ] . Then, we have that

∥wj+1 (t, ·)− wj (t, ·)∥L2[0,l]
≤ K1

∫ t

0
∥wj(z, ·)− wj−1(z, ·)∥L2[0,l]

dz

≤ K1

∫ t

0

M

K1

(K1z)
j

j!
dy =

M

K1

(K1t)
j+1

(j + 1)!

for any t ∈ [0, T ] . Therefore, using the mathematical induction

∥wj+1 (t, ·)− wj (t, ·)∥L2[0,l]
≤ M

K1

(K1t)
j+1

(j + 1)!

and

∥wj+1 (t, ·)∥L2[0,l]
≤M0 +

M

K1

Kt

1!
+ ...+

M

K

(Kt)j+1

(j + 1)!

for all t ∈ [0, T ] and j, j > 2. Applying formula (13) and these estimates, we get

∥w (t, ·)∥L2[0,l]
≤ ∥w0 (t, ·)∥ L2[0,l]

+

∞∑
i=0

∥wi+1 (t, ·)− wi (t, ·)∥L2[0,l]

≤M0 +
∞∑
i=0

M

K

(K1t)
i+1

(i+ 1)!
≤M0 +

M

K1
eK1t

for any t ∈ [0, T ] which proves the existence of a bounded solution of DP (4) in C (L2 [0, l]) .
Now, we will prove uniqueness of solution of problem (4). Suppose that there is a second bounded
solution v(t, x) of (DP) (4) and v(t, x) ̸= w(t, x). We put r(t, x) = v(t, x) − w(t, x). Therefore,
we have that

r(t, x) =

∫ t

0
s (t− y)

∫ l
0 r(y, p)dp

Q
Aσ (x) dy

for z(t, x). Applying estimates (11), we get

∥r(t, ·)∥L2[0,l]
≤

√
l

|Q|

∥∥∥A 1
2 q (·)

∥∥∥
L2[0,l]

∫ t

0
∥r(y, ·)∥L2[0,l]

dy

≤ K1

∫ t

0
∥r(y, ·)∥L2[0,l]

dy

for any t ∈ [0, T ] . Therefore, using the integral inequality, we get

∥r(t, ·)∥L2[0,l]
≤ 0

for any t ∈ [0, T ] and r(t, x) = 0 which proves the uniqueness of a bounded solution of DP (4)
in C (L2 [0, l]).

Finally, taking the first and second order derivatives of (9) with respect to t, we can obtain

wt (t, x) = −s (t)Aφ (x) + c (t)ψ (x)

+

∫ t

0
c (t− y)

{
f (y, x)− 1

Q

(
ω (y)−

∫ l

0
w (y, p) dp

)
Aσ (x)

}
dy,
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wtt (t, x) = −c (t)Aφ (x)−A
1
2 s (t)A

1
2ψ (x)

+c(t)

{
f (0, x)− 1

Q

(
ω (0)−

∫ l

0
φ (p) dp

)
Aσ (x)

}

+

∫ t

0
c (t− y)

{
fy (y, x)−

1

Q

(
ω′ (y)−

∫ l

0
wy (y, p) dp

)
Aσ (x)

}
dy.

Therefore, under assumptions of Theorem 1 and w ∈ C (L2 [0, l]) they follow wt, wtt, Aw ∈
C (L2 [0, l]) . Theorem 2 is established.

Now, let us state the stability result.

Theorem 3. Assume that the assumptions of Theorem 1 hold. The solution of IHP (1) obeys
the stability estimate:

∥utt∥C(L2[0,l])
+ ∥u∥C(W2

2[0,l])
+ ∥p∥C[0,T ] (14)

6M (δ, σ)
[
∥φ∥W2

2[0,l]
+ ∥ψ∥W1

2[0,l]
+ ∥f (0, .)∥L2[0,l]

+ ∥ft∥C(L2[0,l])
+
∥∥ω′′∥∥

C[0,T ]

]
.

Proof. Applying formula (8) and Q ̸= 0, we get the estimate

|p (t)| ≤M1 (δ, σ)
[∣∣ω′′ (t)

∣∣+ ∥wtt∥C(L2[0,l])

]
(15)

for every t, t ∈ [0, T ] and

∥p∥C[0,T ] 6M1 (δ, σ)
[∥∥ω′′∥∥

C[0,T ]
+ ∥wtt∥C(L2[0,l])

]
. (16)

Now, applying formula (6), we can write

utt (t, x) = wtt (t, x) + p (t)σ (x) .

By the triangle inequality, this formula yields us

∥utt∥C(L2[0,l])
6 ∥wtt∥C(L2[0,l])

+ ∥p∥C[0,T ] ∥σ∥L2[0,l]
. (17)

Then, the proof of estimate (14) is based on equation (1), estimates (16), (17) and on the
following stability estimate

∥wtt∥C(L2[0,l])
6M2(σ, a)

[
∥φ∥W2

2[0,l]
+ ∥ψ∥W1

2[0,l]
(18)

+ ∥f (0, .)∥L2[0,l]
+ ∥ft∥C(L2[0,l])

+
∥∥ω′′∥∥

C[0,T ]

]
.

It is clear that the mixed DP (4) can be written as the initial value problem

wtt(t) +Aw (t) + µ (t)Aσ = f (t) , t ∈ (0, T ) ;w (0) = φ,w′ (0) = ψ (19)

in a Hilbert space H = L2 [0, l] with the PDSAO A determining by (3). Therefore, applying the
results of Lemma 2.2 in (Ashyralyev & Emharab, 2019), we can obtain the following stability
estimate

∥wtt(t)∥H 6 ∥Aφ∥H +
∥∥∥A 1

2ψ
∥∥∥
H
+ ∥f (0)∥H (20)

+T ∥ft∥C(H) +M3(σ, δ)

∫ t

0

∣∣µ′′(z)∣∣ dz
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for any t ∈ [0, T ]. Then, applying estimates (15), (20), and the integral inequality, we conclude
that the following stability estimate

∥ωtt∥L2[0,l]
≤M4(σ, δ) {∥φ∥W2

2[0,l]
+ ∥ψ∥W1

2[0,l]
+ ∥f(0, ·)∥L2[0,l]

+T ∥ft∥C(L2[0,l])
+
∥∥ω′′∥∥

C[0,T ]

}
eM2(δ,σ)M3(δ,σ).

is satisfied for the solution of DP (4) for every t, t ∈ [0, T ] . Estimate (18) is proved. Theorem 3
is established.

3 The absolute stable two-step DS. Well-posedness

To state our results, we consider a normed space Cτ (H) = C ([0, T ]τ ,H) of all abstract mesh

functions f τ = {f (tm)}Kk=0 with values in H defined on the uniform mesh space

[0, T ]τ = {tm = mτ,m = 0, 1, ...,K,Kτ = T} , τ > 0

equipped with the norm

∥f τ∥Cτ (H) = max
06m6K

∥f (tm)∥H .

Let L2h = L2 [0, l]hand Wk
2h = Wp

2 [0, l]h , p = 1, 2 be normed spaces of all mesh functions

vh (x) = {vi}Mi=0 defined on the uniform mesh space

[0, l]h = {xi = ih, i = 0, 1, ...,M,Mh = l} ,

equipped with norms ∥∥∥vh∥∥∥
L2h

=

{
M∑
i=0

v2i h

} 1
2

,

∥∥∥vh∥∥∥
W1

2h

=

{
M∑
i=0

v2i h+

M∑
i=1

∣∣∣∣1h (vi − vi−1)

∣∣∣∣2 h
} 1

2

,

∥∥∥vh∥∥∥
W2

2h

=

{
M∑
i=0

v2i h+
M−1∑
i=1

∣∣∣∣ 1h2 (vi+1 − 2vi + vi−1)

∣∣∣∣2 h
} 1

2

,

respectively. We denote the second order difference operator Ah determined by formula

Ahφ
h (x) =

{
− 1

h2
(am+1 (φm+1 − φm)− am (φm − φm−1)) + δφm

}M−1

m=1

(21)

acting in the space of grid functions φh (x) satisfying the nonlocal conditions φ0 = φM , φ1−φ0 =
φM − φM−1. Here am = a(xm) for 0 ≤ m ≤M. It is clear that Ah is the PDSAO in L2h.
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We present the first order of accuracy absolute stable two-step DS

1
τ2

(
uk+1
n − 2ukn + uk−1

n

)
− 1

h2

(
an+1

(
uk+1
n+1 − uk+1

n

)
− an

(
uk+1
n − uk+1

n−1

))
+δuk+1

n = pkσn + f (tk, xn) , tk = kτ, xn = nh,

1 6 k 6 K − 1, 1 6 n 6M − 1,

uk+1
0 = uk+1

M , uk+1
1 − uk+1

0 = uk+1
M − uk+1

M−1, 1 6 k 6 K − 1,

u0n = φ (xn) ,
1

τ

(
u1n − u0n

)
= ψ (xn) , 0 6 n 6M,

∑M−1
i=1 uk+1

i h = ω (tk+1) ,−1 6 k 6 K − 1

(22)

for the numerical solution of the IHP (1). Suppose that

Qh =
M−1∑
i=1

σih ̸= 0, σ0 = σM , σ1 − σ0 = σM − σM−1.

Now, let us investigate the stability of DS (22).

Theorem 4. The solution of DS (22) satisfies the stability estimate:∥∥∥∥∥
{

1

τ2

(
uhk+1 − 2uhk + uhk−1

)}K−1

k=1

∥∥∥∥∥
Cτ (L2h)

+

∥∥∥∥{uhk+1

}K−1

k=1

∥∥∥∥
Cτ(W2

2h)
+
∥∥∥{pk}K−1

k=1

∥∥∥
Cτ

(23)

6M5 (σ, δ)

[∥∥∥φh
∥∥∥
W2

2h

+
∥∥∥ψh

∥∥∥
W1

2h

+
∥∥∥fh1 ∥∥∥L2h

+

∥∥∥∥∥
{
1

τ

(
fhk − fhk−1

)}K−1

k=2

∥∥∥∥∥
Cτ (L2h)

+

∥∥∥∥∥
{

1

τ2
(ωk+1 − 2ωk + ωk−1)

}K−1

k=1

∥∥∥∥∥
Cτ

 ,
where fhk (x) = {f (tk, xn)}Mn=0 , 1 ≤ k ≤ K − 1.

Proof. Denoted as

ukn = wk
n + µkσn, (24)

where {µk}Kk=0 is the grid function determined by

µk+1 =
k−1∑
i=0

(k − i) pi+1τ
2, 1 6 k 6 K − 1, µ0 = µ1 = 0 (25)

and
{{
wk
n

}K
k=0

}M

n=0
is the grid function determined as the solution of DS

1
τ2

(
wk+1
n − 2wk

n + wk−1
n

)
− 1

h

(
an+1

wk+1
n+1−wk+1

n

h −an
wk+1

n −wk+1
n−1

h

)
+ δwk+1

n

= f (tk, xn) + µk+1
1
h2

[
an+1 (σn+1 − σ)− an (σn − σn−1)− δh2σn

]
,

1 6 k 6 K − 1, 1 6 n 6M − 1,

wk+1
0 = wk+1

M , wk+1
1 − wk+1

0 = wk+1
M − wk+1

M−1,−1 6 k 6 K − 1,

w0
n = φ (xn) , w

1
n = φ (xn) + τψ (xn) , 0 6 n 6M.

(26)
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Applying the overdetermined condition
∑M−1

i=1 uk+1
i h = ω (tk+1) and substitution ( 24), one can

obtain that

µk+1 =
1

Qh

(
ωk+1 −

M−1∑
i=1

wk+1
i h

)
. (27)

Using formulas pk =
µk+1−2µk+µk−1

τ2
and (27), we obtain

pm =
1

τ2Qh

(
ωm+1 − 2ωm + ωm−1 −

M−1∑
i=1

(
wm+1
i − 2wm

i + wm−1
i

)
h

)
.

Then, applying the Cauchy–Schwartz inequality, we can write

|pm| 6M6 (σ)

[∣∣∣∣ 1τ2 (ωm+1 − 2ωm + ωm−1)

∣∣∣∣+ ∥∥∥∥ 1

τ2

(
wh
m+1 − 2wh

m + wh
m−1

)∥∥∥∥
L2h

]
(28)

for every 1 6 m 6 K − 1. Therefore,

∥∥∥{pk}K−1
k=1

∥∥∥
Cτ

≤M6 (σ)

∥∥∥∥∥
{

1

τ2
(ωk+1 − 2ωk + ωk−1)

}K−1

k=1

∥∥∥∥∥
Cτ

(29)

+

∥∥∥∥∥
{

1

τ2

(
wh
k+1 − 2wh

k + wh
k−1

)}K−1

k=1

∥∥∥∥∥
Cτ (L2h)

 .
Now, using substitution (24), we get∥∥∥∥∥∥

{{
1

τ2

(
uk+1
i − 2uki + uk−1

i

)}K−1

k=1

}M

i=0

∥∥∥∥∥∥
Cτ (L2h)

(30)

6

∥∥∥∥∥∥
{{

1

τ2

(
wk+1
i − 2wk

i + wk−1
i

)}K−1

k=1

}M

i=0

∥∥∥∥∥∥
Cτ (L2h)

+
∥∥∥{pk}K−1

k=1

∥∥∥
Cτ

∥∥∥{σi}Mi=0

∥∥∥
L2h

.

Therefore, the proof of estimate (23) is based on equation (22), on estimates (29), (30) and∥∥∥∥∥
{

1

τ2

(
wh
k+1 − 2wh

k + wh
k−1

)}K−1

k=1

∥∥∥∥∥
Cτ (L2h)

(31)

6M7(q)

[∥∥∥φh
∥∥∥
W2

2h

+
∥∥∥ψh

∥∥∥
W1

2h

+
∥∥∥fh1 ∥∥∥L2h

+

∥∥∥∥∥
{
1

τ

(
fhk − fhk−1

)}K−1

k=2

∥∥∥∥∥
Cτ (L2h)

+

∥∥∥∥∥
{

1

τ2
(ωk+1 − 2ωk + ωk−1)

}K−1

k=1

∥∥∥∥∥
Cτ


for the solution of DS (26).
It is clear that DS (26) can be written as the abstract DS{

1
τ2

(wk+1 − 2wk + wk−1) +Awk+1 + µk+1Aσ = fk,
1 6 k 6 K − 1, w0 = φ,w1 = φ+ τψ

(32)
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in a Hilbert space H = L2h with the PDSAO Ah defined by (21).
Therefore, using the results of Lemma 3.2 in (Ashyralyev & Emharab, 2019), we get the following
stability estimate ∥∥∥∥ 1

τ2
wk+1 − 2wk + wk−1

∥∥∥∥
H
6 ∥Aφ∥H +

∥∥∥A 1
2ψ
∥∥∥
H
+ ∥f1∥H (33)

+T

∥∥∥∥∥
{
1

τ
(fk − fk−1)

}K−1

k=2

∥∥∥∥∥
C(H)

+
k∑

s=1

∣∣∣∣ 1τ2 (µs+1 − 2µs + µs−1)

∣∣∣∣ τ ∥∥∥A 1
2σ
∥∥∥
H

for every 1 6 k 6 K − 1.

Then, applying estimates (28), (33), and the difference analogue of Gronwall’s inequality, we
conclude that for the solution DS (26) the following stability estimate∥∥∥∥ 1

τ2
wh
k+1 − 2wh

k + wh
k−1

∥∥∥∥
L2h

6 M10(σ, δ)

1−M9 (σ)M6 (σ) τ

{
M8 (σ)

[∥∥∥φh
∥∥∥
W2

2h

+
∥∥∥ψh

∥∥∥
W1

2h

]

+
∥∥∥fh1 ∥∥∥L2h

+ T

∥∥∥∥∥
{
1

τ

(
fhk − fhk−1

)}K−1

k=2

∥∥∥∥∥
Cτ (L2h)

+M9 (σ)M6 (σ)T

×

∥∥∥∥∥
{

1

τ2
(ωk+1 − 2ωk + ωk−1)

}K−1

k=1

∥∥∥∥∥
Cτ

}
e
(k−1)τ

M9(σ)M6(σ)
1−M9(σ)M6(σ)τ .

holds for every 1 ≤ k ≤ K − 1.Estimate (31) is proved. Theorem 2 is established.

4 Numerical Results

We will consider the IHP with the exact solution (u, p) =
(
e−2t (1 + sin 2x) , e−2t

)


utt − uxx − 4p (t) (1 + sin 2x) = 4e−2t sin 2x,
0 < x < π, 0 < t < 1,
u (t, 0) = u (t, π) , ux (t, 0) = ux (t, π) , 0 ≤ t ≤ 1,
u (0, x) = 1 + sin 2x, ut (0, x) = −2 (1 + sin 2x) , 0 ≤ x ≤ π,∫ π
0 u (t, x) dx = πe−2t, 0 ≤ t ≤ 1.

(34)

Applying DS (22) for DP (34) and formula (21), we get the following DS

1
τ2

(
uj+1
m − 2ujm + uj−1

m

)
− 1

h2

(
uj+1
m+1 − 2uj+1

m + uj+1
m−1

)
− 4pj (1 + sin 2xm)

= 4e−2tj+1 sin 2xm, tj = jτ, xm = mh,
1 6 j 6 K − 1, 1 6 m 6M − 1,

uj+1
0 = uj+1

M , uj+1
1 − uj+1

0 = uj+1
M − uj+1

M−1, 1 6 j 6 K − 1,

u0m = 1 + sin 2xm,
1
τ

(
u1m − u0m

)
= −2 (1 + sin 2xm) , 0 6 m 6M,

πe−2tj+1 =
∑M−1

i=1 uj+1
i h, 1 6 j 6 K − 1.

(35)

For obtaining the solution of IP (35), we will apply the following substitution

ujm = wj
m + 4µj (1 + sin 2xm) , 0 ≤ j ≤ K, 0 ≤ m ≤M, (36)

where

µj+1 =
1

4p

(
πe−2tj+1 −

M−1∑
i=1

wj+1
i h

)
, ρ =

M−1∑
i=1

(1 + sin 2xi)h (37)
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for every −1 ≤ j ≤ K−1 and

{{
wj
m

}K

j=0

}M

m=0

be the mesh function determined as the solution

of DS 

wj+1
m −2wj

m+wj−1
m

τ2
− wj+1

m+1−2wj+1
m +wj+1

m−1

h2

+1
ρ

(∑M−1
i=1 wj+1

i h
)
sin 2xm

2
h2 (cos 2h− 1)

=
[

1
h2ρ

π(cos 2h− 1) + 2
]
2e−2tj+1 sin 2xm,

1 6 j 6 K − 1, 1 6 m 6M − 1,

wj+1
0 = wj+1

M , wj+1
1 − wj+1

0 = wj+1
M − wj+1

M−1,−1 6 j 6 K − 1,

w0
m = 1 + sin 2xm,

1
τ

(
w1
m − w0

m

)
= −2 (1 + sin 2xm) , 0 6 m 6M.

(38)

Here and in future ρ =
∑M−1

i=1 (1 + sin 2xi)h, Therefore, solution of IHP (35) contains three
stages. At the first stage, we find the solution of DS (38). For obtaining it, we write DS (38) in
matrix form as the second order difference problem{

Awj+1 +Bwj + Cwj−1 = f j , 1 6 j 6 K − 1,

w0 = {1 + sin 2xm}Mm=0 , w
1 = (1− 2τ)w0,

(39)

where

A =



1 0 0 · 0 −1
b a+ c1 b+ c1 · c1 0
0 b+ c2 a+ c2 · c2 0
· · · · · ·
0 cM−1 cM−1 · a+ cM−1 b
−1 1 0 · 1 −1


(M+1)×(M+1)

,

B =


0 0 · 0 0
0 e · 0 0
· · · · ·
0 0 · e 0
0 0 · 0 0


(M+1)×(M+1)

C =


0 0 · 0 0
0 g · 0 0
· · · · ·
0 0 · g 0
0 0 · 0 0


(M+1)×(M+1)

,

f j =


0

f j1
·

f jM−1

0


(M+1)×1

ws =


ws
0

ws
1

·
ws
M−1

ws
M


(M+1)×1

, for s = j, j ± 1.

Here,

a =
1

τ2
+

2

h2
, b = − 1

h2
, cm =

2(cos 2h− 1)

hd
sin 2xm,

d =
M−1∑
i=1

(1 + sin 2xi)h, e = − 2

τ2
, g =

1

τ2
,

f jm =

[
1

h2ρ
2π(cos 2h− 1) + 2

]
2e−2tj+1 sin 2xm,

115



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

1 6 j 6 K − 1, 1 6 m 6M − 1.

Then, we have the second order difference problem (39) in j with matrix coefficients. Since
w0and w1are provided, we get{{

wj
m

}K

j=0

}M

m=0

by (39). Then, using (25), we get

pj =
1

τ2
(µj+1 − 2µj + µj−1) , 1 ≤ j ≤ K − 1. (40)

We will obtain {pj}K−1
j=1 by formulas (37) and (40) on the second stage. We can obtain{{

ujm
}K

j=0

}M

m=0

by formulas (36) and (37) in the third stage. The errors between the exact

solution (u, p) of (34) at (tj , xm) and approximate solution
(
ujm, pj

)
of DS (35) are computed

by

Eu = max
06j6K

(
M∑

m=0

∣∣u (tj , xm)− ujm
∣∣2 h) 1

2

, (41)

Ep = max
16j6K−1

|p (tj)− pj | .

Now, let us give the obtained numerical results.

Table 1: Numerical results

Errors/N = M 20 40 80 160

Eu 0.0560 0.0289 0.0147 0.0074

Ep 0.0476 0.0244 0.0123 0.0062

The obtained results show that if N and M are doubled, the value of errors of solution of
the DS (35) decreases by a factor of approximately 1/2 (see Table 1 up). Moreover, in Figures
1, 2 and 3 below, plots for errors of u and p that decrease by a factor of approximately 1

2 for
different values of the steps, respectively.

Figure 1: Graphs for errors of u in t.
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Figure 2: Graphs for errors of u in x.

Figure 3: Graphs for errors of p in t.

5 Conclusion

In the present paper, the time-dependent identification problem for hyperbolic equation with
periodic nonlocal conditions is studied. Applying a new version of a operator approach, we
establish the well-posedness of the differential problem. A new absolute stable difference scheme
for the approximate solution of this problem is constructed. The well-posedness of this difference
scheme is established. Numerical test is given.
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